Последовательное соединение RLC-элементов
Соберем установку (рис. 1) из трех последовательно соединенных потребителей: реостат имеет активное сопротивление R, катушка - индуктивное сопротивление , конденсатор - емкостное сопротивление Приборы измеряют действующие значения тока I и напряжения на отдельных элементах и источнике. RLC-параметры можно изменять; источник может быть синусоидальным (U = 127 В) или постоянным (U = 110 В).
Рис. 1.
Если включить цепь на постоянный ток, то ток сначала постепенно возрастает, а затем спадает до нуля: происходит заряд емкости током, проходящим через обмотку катушки индуктивности, которая по закону электромагнитной индукции (самоиндукции) сначала препятствует его возрастанию, а затем его уменьшению. Чем больше R, L и C, тем дольше будет длиться этот процесс; чем меньше R, тем более выражается колебательный характер этого процесса. Колебания возникают вследствие того, что ранее накопленная энергия магнитного поля катушки переходит в энергию электрического поля конденсатора и далее наоборот; колебания затухают благодаря тому, что часть их энергии необратимо поглощается активным сопротивлением R. Чем больше R, тем меньше колебания по амплитуде, но и тем дольше происходит заряд емкости (конденсатора).
Подключим цепь к синусоидальному току U = 127 В (рис. 1). Если f = 50 Гц, С = 32 мкФ, L = 0,32 Гн, R = 38 Ом, в стабильном режиме вынужденных колебаний приборы покажут: U = 127 В, UBC = 25 В, I = 2,5 А. Как видим, для действующих значений напряжений второй закон Кирхгофа не выполняется , поскольку эти напряжения векторные и имеют свои начальные фазы. Законы Кирхгофа справедливы для комплексной формы выражения напряжений (рис. 2):
Рис. 2.
Откуда
где X = UL + UC - реактивное сопротивление электрической цепи.
Полное сопротивление в алгебраической, показательной и тригонометрической формах:
где .
Для и комплексное сопротивление составит:
Отсюда видно, что разность начальных фазовых углов напряжения и тока определяет аргумент комплексного полного сопротивления , т.е.
Векторные диаграммы токов и на комплексной плоскости в соответствии с уравнением Кирхгофа, учитывая сдвиг фаз между напряжениями и током (рис.3).
Рис. 3.
Первая диаграмма (а) построена для цепи, в которой преобладает индуктивное сопротивление. Ток отстает от напряжения , и сдвиг фаз положительный; диаграмма (б) - для цепи, в которой преобладает емкостное сопротивление, ток опережает напряжение , и сдвиг фаз отрицательный. От треугольников напряжений, разделив каждую сторону треугольника на ток, переходим к подобному ему треугольнику сопротивлений.
Мгновенная мощность, в зависимости от знака , идентична мощности RL-цепи ( > 0) или RC-цепи ( < 0).
Активная мощность
определяется произведением действующих значений напряжения, тока и коэффициента мощности
где S = UI - полная мощность.
Величина является реактивной мощностью. Она положительна, когда > 0, и отрицательна, когда < 0. Абсолютное значение
Комплекс мощности
где - сопряженный комплекс тока. Треугольник напряжений подобен соответствующему треугольнику сопротивлений (рис. 4).
Рис. 4.
|